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Abstract. The commuting row-to-row transfer matrices of magnetic hard squares on the 
multicritical T manifold are shown to satisfy a special functional equation called an 
inversion identity. For strip widths up to N = 32, these equations are solved numerically 
for the transfer matrix eigenvalues. The central charge or conformal anomaly c = 1 is 
obtained from 1 / N 2  corrections to the exact bulk free energy and scaling dimensions are 
obtained from the eigenvalue gaps. The magnetic scaling dimension is x, = and the 
sublattice density difference scaling dimension is x,= 1/9(2-y) ,  where y = 2 A / s r  and the 
interaction-dependent crossing parameter A varies between 0 and 2sr/3.  Scaling dimensions 
for further operators fall in the sequence x,, = n 2 x ,  where n = 1,2 ,3 ,4 .  The critical 
exponents also vary continuously along the multicritical line and are given by a = 

and 8 = 15. These exponents are simply related to the exponents of the critical eight-vertex 
and Ashkin-Teller models, which also exhibit Z ,  x Z ,  symmetry, and we argue that these 
models lie in the same universality class. 

( 1 4 - 9 ~ ) / (  16 -9y) ,  p, = 9 ( 2  -y) /16(  16 -9y), p,= 1/2( 1 6 - 9 ~ ) ,  U = 9(2 - ~ ) / 2 (  1 6 - 9 ~ )  

1. Introduction 

In statistical mechanics the universality hypothesis asserts that generally critical 
exponents of lattice models should depend on the dimension and symmetries of the 
model but not on the microscopic interactions. In  sharp constrast, however, there exist 
a few models which exhibit a critical line along which the scaling dimensions and  
exponents vary continuously. Most notable amongst these are the symmetric eight- 
vertex, o r  Baxter model, and the Ashkin-Teller model. These models are defined in 
terms of Ising spins. They both have two independent spin-reversal symmetries and  
four-spin interactions and  they both possess a special decoupling point. There exist 
simple relations between the critical exponents of these two models. Indeed, the critical 
behaviour of both models can be comprehensively understood, within the renormalisa- 
tion group, by ‘mapping’ them onto the completely solvable Gaussian model (Kadanoff 
and Brown 1979, Knops 1980, den Nijs 1981, Nienhuis 1984). From the theory of 
conformal invariance (Friedan et al 1984, Cardy 1987) we now know that the critical 
exponents of many two-dimensional lattice models are in fact quantised and fall into 
various universality classes characterised by the central charge or conformal anomaly 
c. An important exception is the special case c = 1 which is precisely the value which 
occurs for the eight-vertex and Ashkin-Teller models. 

In this paper we consider the magnetic hard-square lattice gas. This model is 
exactly solvable (Pearce 1985, 1987a) on certain manifolds in the thermodynamic 
space, one of which, the T manifold, contains a multicritical surface TlI.  We show 
that, on this T manifold, the commuting row-to-row transfer matrices satisfy a special 
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functional equation called an inversion identity (Pearce 1987b). Similar inversion 
identities have been derived for the eight-vertex (Pearce 1987b) and Ashkin-Teller 
(Pearce 1987c) models. The T manifold of magnetic hard squares is divided into two 
physical regimes which are naturally parametrised in terms of hyperbolic (TI) or 
trigonometric (TII)  functions. Regime TI1 of concern here is a surface of multicritical 
points. We solve the inversion identity numerically for the largest eigenvalues in the 
critical regime TI1 for strip widths up  to N = 32. This allows us to accurately determine 
the conformal anomaly c and various scaling dimensions of the model. We find that 
the exponents vary continuously along the critical line and accordingly the conformal 
anomaly is c = 1. We obtain the leading exponents as functions of y ,  where y = 2A/ T 

and the interaction-dependent crossing parameter A varies between 0 and  2 ~ / 3 .  These 
leading exponents are simply related to those of the eight-vertex and Ashkin-Teller 
models. 

The layout of the paper is the following. In § 2 we describe the model and its 
phase diagram. We also state our results for the scaling dimensions and critical 
exponents of the isotropic model and discuss the scaling behaviour along the multi- 
critical line. In § 3 we derive the inversion identity satisfied by the row-to-row transfer 
matrix on the T manifold. Finally, in § 4 we present the details of the numerical 
solution on the multicritical manifold TI1 of the functional equations derived in 0 3. 

2. The model: phase diagram, exponents and scaling 

Magnetic hard squares (Pearce 1985, 1987a) is a three-state interaction-round-a-face 
or I R F  model (Baxter 1982) that generalises and incorporates the two-dimensional 
magnetic Ising model and  the hard-square (hexagon) lattice-gas models. The model 
describes hard core particles with spin and to each site i of a square lattice is assigned 
a spin variable U, = 0, *l. If the site is empty U, = 0 and if the site is full U, = +1 or 
-1 as the spin of the particle is up  or  down respectively. The occupation number of 
site i is then uf =0,  1. The Boltzmann weight of a face (a ,  b, c, d ) ,  where the four 
spins a, b, c, d round a face are taken in anticlockwise order starting at the bottom 
left, is given by 

(z/2)iaZ+h'+c + d2 ' /4exp(La2c2+ M b 2 d 2 + J a c + K b d )  

ab = bc = cd = da = O  (2.1) 
[o otherwise. 

W ( a ,  b, c, d )  = 

Here z is the total activity of the particles, L and M are diagonal lattice-gas interactions 
and J and K are diagonal magnetic interactions. The face weights are invariant under 
reversal of the spins on either of the two independent sublattices. Moreover, by 
reversing the spins on alternate pairs of diagonals on a periodic lattice we can assume 
that the magnetic interactions are ferromagnetic ( J ,  K 3 0). 

Remarkably, magnetic hard squares is exactly solvable on  four separate manifolds 
in the five-dimensional thermodynamic space spanned by the interactions J, K,  L, M 
and the activity z. Let 

cy = tanh J p = tanh K .  (2.2) 

Then the exact solution manifolds, which are denoted by the letters I (Ising), H 
(interacting hard squares), E (elliptic) and  T (trigonometric), are given by 
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I z e L + " + ~  L -  M fixed 

H cr=p=O z=(l-e-')(l-e-")/(e''" -e'-e") 

E eL = ( (Y + p ) / p (  1 - a')"' e" = ( a  +p)/a( l  -p2) ' / '  (2.3) 

T eL = (1 - ( ~ ' ) ' / ~ / / 3 '  e" = (1 -p2) ' / ' /a2 Z = a'p' 

A H -  - z-1/2( 1 - z eL+") 

z = .p (1 - (Y2)( 1 - p2)( 1 + @)/( (Y + p)" A E  = (1 - ay')(  1 - P ' ) / ( Y ~ (  1 + ( Y P )  

A = ( 1 - (Y' - P2)/2ap. 

On the I and H manifolds the model reduces to two-state spin models (ai = + l ,  ri = 0, 
1 respectively). For isotropic interactions ((Y = p, L = M )  the manifolds H, E and T 
reduce to curves and I to two 'planes at infinity' in a three-dimensional thermodynamic 
space. These manifolds are shown in figure 1. Also shown in figure 1 is the complete 
phase diagram, for the isotropic model, using the topology as determined by a corner 
transfer matrix variational approximation (Pearce and Seaton 1986). In this figure the 
point h denotes the critical point of pure hard squares (a = L = 0), the lines de and ef 
are the Ising critical lines of the I manifold and the curve ST is a locus of tricritical 
points. The surfaces cdef and cSTh are presumably critical surfaces, whereas the 
surfaces dgTS (respectively abdc) appear to be first-order coexistence surfaces between 
the fluid and the paramagnetic (respectively ferromagnetic) solid phases. 

Figure 1. Schematic phase diagram of the isotropic magnetic hard-square model showing 
the exact solution curves H, E and T and incorporating the topology determined by Pearce 
and Seaton (1986). For convenience in plotting, the coordinates are a = tanh J ,  f = 
eL/(eL+3)  and ; = 5 z / ( 5 z + 2 ) .  These coordinates vary between 0 and 1 but only the 
portion of the phase diagram for L a 0  is shown. The curve cMs is the multicritical regime 
TII. The crossing parameter is given by A = 0 at the point S and A = 7r/3 at the multicritical 
point M, which lies at the intersection of the T and E solution curves. Regimes E1 and 
HIV lie entirely in the paramagnetic solid phase. All the other exact solution regimes lie 
on phase boundaries. 
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There are two order parameters for magnetic hard squares, the sublattice density 
difference R = p, - pz and  the total magnetisation m = (m,  + m,)/2, but only three 
phases are observed in the phase diagram. These phases are fluid ( R  = 0, m = 0), 
paramagnetic square-ordered solid ( R  > 0, m = 0) and  ferromagnetic square-ordered 
solid ( R  > 0, m > 0 ) .  There is no indication of a ferromagnetic fluid ( R  = 0, m > 0) 
either in the exact solution or  in the variational approximation. It therefore appears 
that spin-reversal symmetry is broken only on the sublattice that is preferentially 
occupied and  hence m = m,/2 and m2 = 0. So, although magnetic hard squares has 
Z2 x Z2 symmetry, these symmetries are not on an equal footing as for the eight-vertex 
and Ashkin-Teller models. Here, one Z2 symmetry corresponds to the spontaneous 
breaking of translational symmetry into two sublattices and  the other to spontaneous 
breaking of spin-reversal symmetry on the preferentially occupied sublattice. What is 
more, unlike the eight-vertex and Ashkin-Teller models, magnetic hard squares does 
not have a decoupling point. 

Most of the thermodynamic quantities of interest have already been calculated on 
the I (see, for example, Baxter 1982), H (Baxter 1980, 1981, Baxter and Pearce 1982, 
1983, Pearce and Baxter 1984) and E (Jimbo and Miwa 1985, Pearce 1985, 1987a) 
manifolds. Not so much is known about the T manifold (Pearce 1985), although the 
free energy and the order parameters in the non-critical regime TI have been calculated. 
In this paper we focus on the multicritical regime TII. The T manifold (2.3) is a 
two-dimensional manifold in the full five-dimensional thermodynamic space. The 
curve A = 1 separates the multicritical regime TI1 ( l A i <  1) from the regime TI(A> 1) 
which is a first-order surface of three-fold phase coexistence between the fluid and the 
two paramagnetic square-ordered solid phases. Let us define 

sinh U TI 
sin U TI I 

s ( u )  = (2.4a) 

and set 

(Y = S- = s ( A  - u ) / s (  A )  P = s = s ( u ) / s ( A )  S+ = s(A + u ) / s ( A )  (2.46) 

where O < u < A  and 

A = (  cosh A TI 
cos A TII. 

Then the seven independent face weights can be written as 

w ,  = W(O,O, 0,O) = 1 

w? = W ( u ,  0 ,  0,O) = W ( 0 ,  0,  U, 0) = s / J 2  

6 J 3  = W ( 0 ,  a, 0,O) = W ( 0 ,  0,  0 ,  a )  = s- 

0 4  = W ( u ,  o, a, o)  = (1 + s-)/2 

W(u,O, - u , O ) = ( l - s - ) / 2  

W (  = W(0 ,  U, 0,  U )  = 1 + s 

w , =  W ( 0 ,  U, 0, - U )  = 1 - - s  

( 2 . 4 ~ )  

(2.5) 

where U = i.1. These weights are entire functions of the spectral parameter U. In the 
case of isotropic interactions U = A / 2  and, within regime TII, A varies in the range 
0 < A < 2 x / 3  to ensure positivity of the Boltzmann weights. 
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The inversion identity for the T manifold is derived in § 3 and solved numerically 
for regime TI1 in § 4. The solution of the inversion identity for regime TI will be 
considered elsewhere. In  the remainder of this section we summarise our main results 
for the critical exponents and  briefly discuss the scaling behaviour. For the conformal 
anomaly c we find c = 1. The scaling dimensions of various primary operators obtained 
by solving the inversion identity are presented in  table l (a) .  These exponents vary 
continuously along the multicritical line with 

y=2A/7T cos A = :[-3 + (1 +4eZL)”’]. 

The identification of operators corresponding to these exponents is also shown in table 
1 (  a ) .  As explained in D 4, some of these identifications are tentative. The identifications 
summarised in table l ( a )  lead to the results for the standard critical exponents shown 
in table l ( b ) .  The critical exponents of the eight-vertex and Ashkin-Teller models are 
also shown for comparison. Here the model parameters y , ,  and y,,, which depend 
on the four-spin interactions, are as defined in Baxter (1982) .  Notice that the critical 
exponents of all three models satisfy the relations 

Table 1. ( a )  Identification of various primary operators and their scaling dimensions 
( y  = 2 A / ~ r ) .  The spins on the corners of a unit square are denoted by a, b, c, d. The 
operators in the even (odd)  sector are invariant (change sign) under spin reversal of all 
the spins. The odd operators appear in doublets because spin-reversal symmetry is not 
spontaneously broken on the sublattice (containing the b and d spins) that is not preferen- 
tially occupied. ( b )  The continuously varying exponents of magnetic hard squares along 
the multicritical line ( y  = 2A/  7 ) .  The exponents of the eight-vertex and Ashkin-Teller 
models are shown for comparison. 

Name Symbol Operator Scaling dimension 
Conjugate 
field 

Sublattice density difference 
Total energy 
Marginal 
Sublattice energy difference 
Anisotropy 
Total density 

Magnetisation 
Correlation 

R 
E+ 
A 
E -  

P 

U 

m 
c,,,, 

Even sector singlets 
a’ - b’ 
a 2 c ‘ +  b?d‘ 

ac i bd 

ac - bd 

a ‘ c 2  - b’d’ 

0 2 t h ’  

a i b  
ac( a + c * bd ( b + d ) 

Odd sector doublets 

x , = x e = 1 / 9 ( 2 - y )  
x2 = X, = 4/9(2 - y )  
x = 2  

x = 2  
x 4 =  1 6 / 9 ( 2 - y )  

x 3 = 1 / ( 2 - ? ’ )  

k 
L + M  
J + K  
L - M  
J - K  

h 
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in addition to the usual scaling relations. This is due  to the fact that the magnetic and  
energy scaling dimensions satisfy x, = a  and x, = 4x, for all three models. If we equate 
the leading thermal exponents for these models we find that 

4/9(2 -.v) = 2 - . Y ~ V  = 1/( 2 - Y A T ) .  (2.8) 

With this identification, all of the exponents in table 1(6) correspond for the three 
models. This strongly suggests that the three models just give different manifestations 
of the same universal critical line. 

Using the critical exponents of tables l ( a )  and (6)  gives the following alternative 
scaling forms for the singular part of the free energy: 

fSlng(f.  4, h, k, 4 A , .  . . I  
= 6-*fSlng(6’2f, 6)4q, b‘-lh, b’lk, U, A , .  . .) 

Here b is an  arbitrary scale factor, t is the leading thermal non-linear scaling field, q 
is the next-to-leading thermal non-linear scaling field, h is the magnetic symmetry- 
breaking non-linear scaling field and k is the sublattice symmetry-breaking non-linear 
scaling field. The scaling exponents y ,  are related to the scaling dimensions x, given 
in table l ( a )  by 

y, =2-x, .  (2.10) 

In Pearce (1985, 1987a) the critical behaviour and critical exponents have been 
discussed at the special point M ( A  = 7 / 3 )  where the E manifold intersects the multi- 
critical TI1 manifold. In these papers the critical exponents were calculated with q as 
the deviation from criticality variable and the last scaling form in (2.9) was taken as 
the starting point for discussing the scaling behaviour. However, as q varies the exact 
free energy varies analytically on the E manifold even across the multicritical line. In 
fact the dominant singularity is obtained by crossing the point M in a different direction 
corresponding to the leading thermal field t .  Thus t should be taken as the deviation 
from criticality variable and not the next-to-leading thermal field q. Doing this we 
obtain the critical exponents 

p = p  m =A 40 p I -  - p  e = L  20 u = p = :  S = 1 5  (2.11) 

at the special point M common to the E and T manifolds. 

3. The inversion identity 

The elements of the row-to-row transfer matrix V are given by 
‘ 

v<, ,<,=n w U , , U , 7 1 , U ; + , , U ; )  
, = I  

(3.1) 

where cr and U‘ are the configurations of two successive periodic rows of N spins. 
The matrix V is an A,’ x A,‘, matrix with A N  = 2’ + (-1lN. We will show in this section 
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that on the T manifold, where the face weights are given by (2.5), the row-to-row 
transfer matrix V (  U )  satisfies the functional equation or inversion identity (Pearce 
1987b) 

(3.2) 

where P (  U )  is an auxiliary matrix which commutes with V (  U), I is the identity matrix 
and 4 ( u ) = s N  with s given by (2.3) and (2.4). The transpose matrices are given by 
V ( u I T =  V ( A - U )  and P ( U ) ~ = ( - I ) ' ~ P ( - U )  and both V ( 0 )  and V ( A )  are shift 
operators. The matrices V ( u )  and P ( u )  commute with the spin-reversal operator R 
with elements 

V ( U )  v (  U + A )  = 4(A i- u ) 4 ( A  - u)I+ $ J ( u ) P ( u )  

Their eigenvalues can therefore be labelled by the eigenvalues R = *1 of R .  The 
matrices V (  U )  and P (  U )  must also satisfy the periodicity conditions 

V ( u  -k Ti) = R V ( u  j 

V ( u  -k T )  = R V ( u )  

P(U+ xi) = ( - I ) ~ P ( u )  T I  

P (  U + x )  = (-l)NP( U )  
(3.4) 

TII. 

I n  general, the inversion identity (3.2) admits many solutions subject to the constraints 
(3.4). In  Pearce (1985) it was conjectured that the row-to-row transfer matrix V (  U )  
on the T manifold satisfies a similar functional equation to that of the six-kertex model. 
In fact (Pearce 1987b) the six-vertex model satisfies precisely the inversion identity 
(3.2). The even sector ( R  = 1) corresponds to the six-vertex model with periodic 
boundary conditions while the odd sector ( R  = -1) corresponds to the six-vertex model 
with boundary conditions such that horizontal arrows are reversed at the boundary. 
As is discussed in § 4, the inversion identity (3.2) is sufficient to determine the 
eigenvalues V ( u )  in the odd sector, while in the even sector, additional information 
(4.9) on the behaviour of V ( u )  as u + A / 2 - i *  is required to obtain the eigenvalues. 

We now derive the inversion identity (3.2). Let V =  V ( u ) ,  V ' =  V ( u + A ) ,  and 
similarly for the face weights W and W'.  Then it follows that 

[ V V ' ]  ,,,, = T r  S ( a , ,  a?,  al., a i )S(o , ,  a 7 ,  4, ai).. . S ( a N ,  a , ,  ai, a & )  (3.5) 

[ S ( a , ,  ai, a ; ) ] - ,  -.= W ( ~ I ,  7 2 ,  71)w'(Ti, 7 2 ,  ai, (3.6) 
with 7 being the intermediate row of spins. I f  a, = a: = 0, then 7; can assume the values 
0, rl and the corresponding S matrices have three rows or columns. Otherwise we 
must have 7, = O  and the corresponding S matrices have one row or column. Thus 
S(0, 0, 0,O) = A is a 3 x 3 matrix and all the other S matrices are 1 x 3 row vectors, 
3 x 1 column vectors or 1 x 1 scalars. Now let 

where the twenty-five S matrices have elements 

be the orthonornial eigenvectors of 
d'2 --s2 -s2 
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corresponding to the eigenvalues s+s-, s’ and 0, respectively, so that 

Ax = s+s-x  y T A  = s2jjT A Z = Z ~ A = O .  (3.9) 

Then the twenty-four other S matrices are given by 

S(0, U, U, 0) = S + S - X  

S ( O , u , - w , o ) = x - s ” + ~ u s Z  

S(0, 0, a, 0) = (s, + s - ) x / ~  + ASY - USS- z / J 2  
S(0, U, 0,O) = (s, + s - ) x / J ~  - JZASY + USS, z 

S ( q  o,o,  U )  = s + s - X T - y T + ~ ( S + + S _ ) Z T / J 2  

S(0, 0, 0, U )  = - f i s yT+ U S S ,  ZT 

S(  U, 0, 0,O) = syT - uss-  ZT/d2 

S( U ] ,  0, U 2 , O )  = ss+/2 

S(0, U ] ,  0, u 2 )  = -ss- 

2 T  S(U, O , O ,  - U )  = -S y - V ~ U A S Z ~  
(3.10) 

where U, U , ,  u2 = i l .  It is now straightforward to evaluate the following inner products 
( U ,  U], U> = * 1 ): 

S(u,, o,o,  u,)S(O, U, U, 0) = 0 

S ( U I ,  o,o,  u,)S(O, u2, C 2 , O )  = (S+S-lZ 

U1 f U2 

S(UI ,  O , O ,  -uI)S(O, ~ 2 ,  - U > ,  O ) = S ’ ( S ’ - ~ A ( + , U ~ )  

S ( ( T I , O , O ,  -uI)S(O, u ~ , O , O ) = J Z A S ’ ( S - U , ( + ~ S + )  

S(U~,O,O,  -u,)S(O,O, U ~ , O ) = - J Z A S ~ ( S - ( T , U ~ S - )  

S(a,,O,O,O)S(O, U ~ , O , O ) = - S * ( ~ A + U ( + , U ~ S , S - ) / J ~  

S ( O , O , O ,  u,)S(O,O, u , , O ) = - S ~ ( ~ A + U , U ~ S + S _ ) / J ~ .  

(3.11) 

Because of the periodic boundary conditions, the above observations suffice to show 
that the non-zero elements of [ VV’] , , , , ,  fall into two categories: either U, = u; for all j 
(these are the diagonal elements), or else qui = 0 for all j .  The vacuum element 
(U, = U: = 0 for all j )  of VV’ is given by 

TrA‘ = ( s + s - ) ~ + s ~ ’ .  (3.12) 
The non-vacuum elements break up into scalar segments. For diagonal elements the 
segments of length n are of the form 

(3.13) S(U] ,  o,o ,  u,)S(O, o,o, o)“-”(o, U:,  U ? ,  0) = ( S + S - ) ‘ l .  

For off-diagonal elements the various segments of length n are all of the form 

S“ x entire function of U. (3.14) 
This follows directly for segments of length 1 or 2 from (3.10) and (3.11). For longer 
segments it is easier to use the facts that for U ,  # U? 

s ( u ] ,  0, 0, ~ , ) s ( o ,  0, 0, 0) = s2yT x entire function of U 

.yTS(O, U,, u2,  0) = s x entire function of U. 
(3.15) 

In  all cases we conclude that the elements of V V ’  are of the form given by the inversion 
identity (3.2) with the elements of P ( u )  entire functions of U. 



Continuously varying exponents in magnetic hard squares 6479 

4. Numerical solution in TI1 

In this section we discuss the numerical solution of the inversion relation (3.2) in 
regime TIL Let 

Vn = exp( - E,, ) n = 0 , 1 , 2 ,  . . .  

be the eigenvalues of the row-to-row transfer matrix V for a 
with periodic boundary conditions. Then, for the isotropic 
anomaly c and the scaling dimensions x ,  are given by the 
estimators (Blote et al 1986, Cardy 1986, 1987): 

c ( N )  = - ( 6 N / r ) ( E o -  N f )  

x, ( N )  = ( N/277)( Re E, - Eo) 

(4.1) 

strip of even width N 
model, the conformal 
limiting values of the 

where Eo is the ground-state energy, E,  are the low-lying energy levels and f is the 
exact bulk free energy (Pearce 1985) 

Ji 

--x 

cosh ( r -2A) t  sinh ut sinh(A - u ) t  
t sinh .rrt cosh A t  

f = ]  d t  (4.4) 

For a discussion of the anisotropic model see Kim and Pearce (1987). 
In TI1 the critical Boltzmann weights (2.5) are polynomials in the variable 

v = exp( -iu + iA/2). (4.5) 

Each element of the transfer matrix V (  U )  = V (  U )  is a product of N of these weights. 
Hence V ( u )  can be written in the polynomial form 

2 N 

V ( v ) =  V k Y N + k  
k = O  

(4.6) 

where the matrices V ,  are independent of U. Since the Boltzmann weights are real for 
real U, we must have v: = V2N-k. Similarly, since taking the transpose is equivalent 
to replacing U with A - U ,  we have V : =  V 2 N - k .  Hence Vk are Hermitian matrices. 
Furthermore, since the Vh commute with each other and possess u-independent 
eigenvectors, each eigenvalue V ( u )  of V ( U )  is also a polynomial in t’ with real 
coefficients. The eigenvalues V (  U )  are either symmetric or  antisymmetric under spin 
reversal, i.e. V (  U + r) = RV(  U )  where R = *l is the spin-reversal quantum number. 
We can therefore write V ( c )  in the form 

where the coefficients AA are real and the leading factors are included for convenience. 
The eigenvalue P( U )  of the auxiliary matrix P (  U )  can similarly be written as a 

polynomial in the variable U 
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Again the coefficients E,: must be real since P(u)  is real for real U and P’(u) = 
( - l ) N P ( - ~ ) .  Inserting (4.7) and (4.8) into the inversion identity (3.2) and equating 
powers of v, we obtain ( 2 N  + 1) equations for the unknowns AL and Bk. The functional 
equation can therefore be solved immediately in the odd sector ( R  = -1) for the 
( 2 N  + 1) unknowns. In the even sector ( R  = l ) ,  however, there are ( 2 N + 2 )  unknowns 
and  an extra condition must be imposed. The condition we impose is 

A, = lim (20 sin A ) “ V (  v )  (4.9) 
r.-0 

where the limit v + 0 or  U + A 12 - io0 is obtained by direct diagonalisation of the limiting 
row-to-row transfer matrix. For all the low-lying levels in the even sector of interest 
here it is found that either A, = 2 or  A, = - 1 independent of N and A. Specifically, 
for E,,  E , ,  . . . , E, we find A, = 2, -1, -1, 2, -1 respectively. 

For small values of N ( N  s lo),  the eigenlevels can be obtained by direct diagonali- 
sation of V(U) .  In this method the eigenvalues are found by using the common 
eigenvectors of V, to evaluate the Ak in the polynomials (4.7). The levels for different 
N are identified and classified according to the spin-reversal quantum number R, the 
momentum p = 27rj/ N ( j  = 0 , 1 , .  . . , N - 1) and the degeneracy of the eigenstate. For 
larger values of N (10 32) the inversion identity can be solved for the AI .  In 
practice, however, it is more convenient to solve for the complex zeros of the poly- 
nomials (4.7) because they behave in a systematic and predictable way as N increases. 
The initial patterns of zeros are inferred from the results of direct diagonalisation. 
This is of practical importance because the inversion identity admits many solutions. 
By iterating from the initial zero patterns we have obtained the estimators c(  N )  and 
x , ( N )  given by (4.2) and  (4.3) for many values of A and for several eigenlevels. The 
lengths of the sequences are limited by numerical uncertainties. We stop the sequences 
whenever the ninth digit in the estimators becomes uncertain. 

Tables 2 ( a )  and ( b )  show the c ( N )  sequences obtained for A = 713 and 2 n / 3  
respectively. To analyse our sequences we use the alternating-& algorithm (Hamer and 
Barber 1981). In the second columns of table 2, we show the accelerated sequences 
obtained by one iteration of the alternating-& algorithm. Here and below we take the 
last entry to be our extrapolated value. Thus, for the central charge, we find the 
estimates c = 1.000 001 and 1.0001 for A = n / 3  and A = 2 n / 3  respectively. We also 
obtain c(  N )  sequences for N up to 16, 26 and 20 for A = 716, n / 4  and 77~112 
respectively. The extrapolated values for c obtained from them are 1.001, 1.0002 and 
1.000 01 respectively. For other values of A the results of direct diagonalisation were 
all consistent with c = 1. We therefore conjecture that c = 1 exactly for all A between 
0 and 2 ~ 1 3 .  

Above the ground state, we have identified four singlet states with R = 1 whose 
scaling dimensions x,,, n = 1 ,2 ,3 ,4 ,  labelled in increasing order, vary continuously 
with A. These are associated with momentum p = n ( 0 )  for n odd (even). The estimators 
x , ( N )  for these levels are shown in table 3 for A = n /3 .  The extrapolated values are 
again the last entry given by one iteration of the alternating-& algorithm. We show 
only the significant digits in the extrapolated values. Extrapolated values of x,, for 
other values of A are shown in  table 4. The maximum strip widths used are 16, 26, 
32, 20 and 16 for A = n/6, nI4, 7 1 3 ,  7x112 and 2 ~ 1 3 ,  respectively, except for x3 
where we used 22 and 16 for A = n/3 and 7x112 respectively. We find that the data 
for x, fit perfectly the simple formula 

x,, = n -,Ye n = 1 , 2 , 3 , 4  (4.10) 

N 
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Table 2. Conformal anomaly estimator sequences c (  N )  for ( a )  A = n / 3  and ( 6 )  A = 2n/3 .  
The adjacent columns are the accelerated sequences given by one application of the 
alternating-€ algorithm. 

( 0 )  

N c ( N )  Accelerated 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 

0.852 345 578 
0.949 225 973 
0.975 512 468 
0.985 873 262 
0.990 901 650 
0.993 689 289 
0.995 384 050 
0.996 486 475 
0.997 241 588 
0.997 780 277 
0.998 177 403 
0.998 478 198 
0.998 71 1 256 
0.998 895 343 
0.999 043 181 
0.999 163 631 

1.000 029 12 
1.000 027 3 1 
1.000 019 53 
1.000013 12 
1.000 008 83 
1.000 006 07 
1.000 004 28 
1.000 003 10 
1 .OOO 002 30 
1.000 001 75 
1.000 001 36 
1.000 001 09 

N c ( N )  Accelerated 

2 0.899 796 112 
4 0.961 538 584 
6 0.979 224 410 0.997 245 04 
8 0.987 380 709 1.000 702 25 

10 0.99 1 623 400 1 .OOO 439 86 
12 0.994 063 666 1.000 1 12 98 
14 0.995 583 875 
16 0.996 59 1 025 

where 

X ,  = 1 /9 (2 - y ) y = 2 A / r .  (4.11) 

For comparison, we also list in table 4, the values of n'x,. These, together with less 
accurate estimates from direct diagonalisation, lead us to conjecture that the fcrmulae 
(4.10) and (4.11) are exactly correct. 

From the exact solution along the E manifold (Pearce 1985) we expect, at  A = 7 r / 3  
where it intersects the T manifold, to find scaling operators in the even sector with 
scaling dimensions &, f and !. This is in excellent agreement with the results of table 
4 and, accordingly, we identify without ambiguity the corresponding operators as the 
sublattice density difference, the total energy and  the total density for n = 1 ,  2 and 4 
respectively as shown in table l ( a ) .  For n = 3 we propose the sublattice energy 
difference operator as a likely candidate. This is the only remaining even operator 
that can be formed from the four spins on a unit square. 

In the odd ( R  = - 1 )  sector the lowest lying states are a doublet of momentum 0 
and 7r near A. Above this, near 5 ,  we find another doublet of momentum 0 and 7r. We 
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Table 3. Scaling dimension estimator sequences x , , ( N )  for the first four singlet levels in 
the even ( R  = I )  sector a t  A = n / 3 .  The extrapolated values are  the last entry of the 
accelerated sequence given by the alternating-€ algorithm. 

N 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 

x , ( N i  

0.071 028 798 
0.079 102 164 
0.081 292 706 
0.082 156 105 
0.082 575 137 
0.082 807 441 
0.082 948 671 
0.083 040 540 
0.083 103 466 
0.083 148 356 
0.083 181 450 
0.083 206 517 
0.083 225 938 
0.083 241 279 
0.083 253 598 
0.083 263 636 

X Z (  N 1 

0.291 664 398 
0.317 639 423 
0.325 199 056 
0.328 362 964 
0.329 977 332 
0.330 91 1 058 
0.331 499 829 
0.331 895 242 
0.332 I73 855 
0.332 377 717 
0.332 531 492 
0.332 650 428 
0.332 744 368 
0.332 819 898 
0.332 881 565 
0.332 932 586 

Extrapolated 
0.083 333 4 0.333 334 

xi ( N I 

0.961 644 565 
0.870 7 I 2  593 
0.835 852 127 
0.817 063 854 
0.805 201 918 
0.796 989 520 
0.790 948 354 
0.786 308 893 
0.782 629 254 
0.779 636 818 

0.750 0 

1.402 915 77 
1.347 214 06 
1.334 762 56 
1.33 1 046 09 
1.329 897 77 
1.329 645 89 
1.329 730 41 
1.329 938 81 
1.330 184 45 
1.330 43 1 01 
1.330 663 64 
1.330 877 02 
1.331 070 12 
1.331 243 79 
1.331 399 63 

1.333 

Table 4. Numerically determined values of the scaling dimensions x,,, n = I ,  2,3,4, for 
various values of A. Only significant digits are  shown. The conjectured exact values n’x, 
are  shown alongside for comparison. 

XI  xz x3 x4 
- 

A Extrapolated x, Extrapolated 4x, Extrapolated 9x, Extrapolated 16x, 

716  0.068 0.06 0.266 7 0.26 

7/3 0.083 333 4 0.083 0.333 334 0.3 0.750 0 0.75 1.333 1.3 
n / 4  0.074 1 0.0746 0.296 29 0.296 1.183 1. i85 

7 7 / 1 2  0.133 334 0.13 0.533 333 0.53 1.200 1.2 
2713 0.16667 0.16 0.66667 0.6 

Table 5. Numerically determined values of the scaling dimensions .Y-, and  . x - ~  in the odd  
sector ( R = - 1 ) for several values of A .  

A .x-, extrapolated x-? extrapolated 

;7/4 0.127 
n/ 3 0.125 3 
7 7 / 1 2  0.12499 
2 7 1 3  0.125 

Exact 0.125 

1.12 
1.125 0 
1.125 0 
1.125 0 

1.125 
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label the scaling dimensions of these levels by XL, and x - ~  respectively. Table 5 shows 
our extrapolated values for these exponents for A = 714, 7 1 3 ,  77 /12  and  2713 using 
maximum strip widths of 26, 32, 20 and 14 respectively. In general the convergence 
of sequences for smaller values of A are poorer, as has been encountered in other 
models (Alcaraz et a1 1987). Taking this into account we conjecture that 

x - ,  =$  X-2 = ; (4.12) 

for all A, O <  A < 2 ~ / 3 .  Again, the exact solution at A = 713  (Pearce 1985) allows us 
to identify the zero-momentum operator as the total magnetisation. The momentum-r  
partner is associated with the sublattice magnetisation operator. Since one sublattice 
magnetisation is always zero (even in the ferromagnetic solid phase) the critical 
exponents for the two order parameters are the same giving rise to the degeneracy of 
the level. To the second doublet x-?, we tentatively associate the operators ac( a + c )  * 
b d ( b  + d )  since, apart from (a  + c )  * ( b  + d ) ,  these are the only odd sector operators 
that can be formed from the spins a, b, c, d on the corners of a unit square. 

All operators discussed above are primary operators (Belavin et a1 1984) with zero 
spin. The level diagram obtained by direct diagonalisation also shows two non-zero 
spin levels with x in the range 1.1 - 1.2. One is a doublet with momentum p = 7 * 2 7 1  N, 
R = 1 and  the other is a quartet with p = *27 /  N,  r*27rTT/ N and R = -1. To each 
primary operator with scaling dimension x there is a conformal block of operators 
(descendents) whose scaling dimension and spin are x + m + ITZ and s + m - rii, respec- 
tively, for m, m = 0, 1 , 2 , .  . . (Belavin et al 1984, Cardy 1987). For magnetic hard 
squares the momentum p of the eigenstate associated with the operator of spin s + m - 61 

0 n i6 n i 3  ni2 2 
A 

3 

Figure 2. Variation of the primary operator  scaling dimensions as  a function of A. We 
show the complete spectrum for x s 1.35. 
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is given by 

p =27r/ N ( s +  m - m )  mod n-. (4.13) 

The reason mod 7r appears here instead of the usual mod 2n- is that in the adjoining 
d 2  x J2 ordered phases the ordered structure repeats itself only after two translations 
along the side of the square edges, and hence V 2  should be regarded as the generator 
of unit translation. Therefore the doublet and quartet levels carry spin* 1 and are 
naturally identified with (m, m) = (0, 1) and (1 ,O)  levels descended from the singlet x1 
and the doublet x-, respectively. The expected scaling dimensions 1 + x, and 0 for the 
doublet and quartet are also consistent with our results from direct diagonalisation. 
In this way we also identified the descendents of x2 whose scaling exponents are 1 +4xe. 

This completes the analysis of the transfer matrix eigenenergy spectrum for regime 
TI1 for 0 < A < 2 ~ / 3  and for x s 1.35. We have not attempted to sort out the higher 
levels although it would be intriguing to know whether all even sector primary operators 
correspond to Gaussian model operators with dimensions 

x , , ~  = n2xe+ m2/4xe n , m = 0 , 1 , 2  , . . .  (4.14) 

as in the X X Z  results of Alcaraz er a1 (1987). Unfortunately, the vortc operators 
(Kadanoff and Brown 1979) would have dimensions m2/4xe (m = 1 , 2 , .  . .) that are 
outside of the range of our present analysis. Figure 2 shows the variation of the scaling 
dimensions x,, n = 1 ,2 ,3 ,4  and x - ~ ,  x - ~  as a function of A. For x d  1.35 this is a 
complete set of energy levels associated with primary fields. 
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